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The Physics Book provides an excellent reference for many useful for-
mulae, but sometimes it is hard to find exactly the form needed, with all
conventions defined. This note is supposed to be useful, not new. Perhaps it
will be of some pedagogical value.

1 Oscillations

We write the Schrö dinger Equation for the coupled B0 - B
0

system as

i
d

dt

(
a

b

)
=

(
M − iΓ/2 M12

M∗
12 M − iΓ/2

)(
a

b

)
(1)

where a is the coefficient of |B0〉 and b is the coefficient of |B0〉 We have
ignored Γ12 as is appropriate for Bd (but not for Bs) because the common

states to which both B0 and B
0

can both decay are Cabbibo suppressed.
The (complex) eigenvalues of the matrix are

µ± = M − iΓ/2± |M12| (2)

It is traditional to define the mass eigenstates as

|BL〉 = p|B0〉+ q|B0〉
|BH〉 = p|B0〉 − q|B0〉 (3)

which can be inverted to get the (time-independent) states

|B0〉 =
1

2p
[|BL〉+ |BH〉]

|B0〉 =
1

2q
[|BL〉 − |BH〉] (4)

A state that begins as B0 at t = 0 evolves as

|B0
phys(t)〉 =

1

2p
[e−iµ−t(p|B0〉+ q|B0〉)e−iµ+t(p|B0〉 − q|B0〉)]

= e−i(M−iΓ/2)t[cos(∆mt/2)|B0〉+ i
q

p
sin(∆mt/2)|B0〉] (5)
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and similarly

|B0
phys(t)〉 = e−i(M−iΓ/2)t[cos(∆mt/2)|B0〉+ i

p

q
sin(∆mt/2)|B0〉] (6)

For each of the eigenvalues we can determine the eigenvector. Following
the convention above for the lighter eigenstate

(M − iΓ/2)p+M12q = (M − iΓ/2− |M12|)p

q/p = −|M12|
M12

= − M∗
12

|M12|
(7)

where that − sign is the consequence of using the lighter state to define p
and q.

2 CP Violation from Mixing

Now consider the decay to a state f that is an eigenstate of CP :

CP |f〉 = ηf |f〉 (8)

Now let us define the decay amplitudes from B0 and B
0

to f :

A = 〈f |H|B0〉
A = 〈f |H|B0〉

(9)

The central quantity in our considerations is

λ =
q

p

A

A
(10)

Note that both factors here depend upon phase conventions, which have
not been specified yet. We return to this below.

The decay rates are proportional to the absolute squares of the ampli-
tudes. We suppress the exponential e−Γt common throughout.
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|〈f |H|B0
phys(t)〉|2 = |A|2| cos(∆mt/2) + iλ sin(∆mt/2)|2

= |A|2|[1
2
(1 + cos ∆mt) + 1

2
|λ|2(1− cos ∆mt)

+2<iλ sin(∆mt/2) cos(∆mt/2)]

= |A|2[1
2
(1 + |λ|2) + 1

2
(1− |λ|2) cos ∆mt−=λ sin ∆mt]

|〈f |H|B0
phys(t)〉|2 = |A|2[1

2
(1 + cos ∆mt) + 1

2
| 1

λ|2
(1− cos ∆mt)−=1

λ
sin ∆mt]

= |A|2[1
2
(1 + |λ|2)− 1

2
(1− |λ|2) cos ∆mt+ =λ sin ∆mt]

(11)

This result agrees with that of Helen Quinn and Tony Sanda in RPP 2000,

pp. 627-8. Note that going from B0 to B
0

the coefficients of both sin ∆mt
and cos ∆mt change.

If we write λ out explicitly we find

λ =
q

p

A

A
= −|M12|

M12

A

A

= −|〈B
0|H|B0〉|

〈B0|H|B0〉
〈f |H|B0〉
〈f |H|B0〉

(12)

This makes explicit the independence of λ on our choice of phases for either

B0 or B
0
. Redefining either by, say |B0〉 → eiζ |B0〉, leaves λ unchanged.

Now the weak Hamiltonian contains many pieces: strangeness raising,
b-ness raising trees, b-ness raising penguins, ... strangeness lowering, b-ness
lowering trees, etc. Were there no weak phases from the CKM matrix, the
theory would be CP conserving. The full weak Hamiltonian would be

H =
∑
Hj +

∑
H†

j (13)

where
CPHjCP = H†

j (14)

When there are weak phases present we have instead

H =
∑

eiφjHj +
∑

e−iφjH†
j (15)
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The phases are opposite for the two pieces because the Hamiltonian must be
equal to its own adjoint so that the theory will be unitary (this isn’t exactly
the same sense of unitary as in the unitary triangle, but almost).

Suppose that only a single piece, Hk, contributes to B0 → f . Then only

H†
k, contributes to B

0 → f . From this we conclude that

A = 〈f |H|B0〉 = 〈f |eiφkHk|B0〉
A = 〈f |H|B0〉 = 〈f |e−iφkH†

k|B
0〉

= 〈f |e−iφkCPHkCP |B
0〉

= e−2iφkηf〈f |eiφkHk|B0〉〈B0|CP |B0〉
= e−2iφkηfA〈B0|CP |B0〉

(16)

Now we can write λ as

λ = −|〈B
0|H|B0〉|

〈B0|H|B0〉
ηfe

−2iφk〈B0|CP |B0〉 (17)

Again the independence of phase convention is manifest.
Now we almost know the phase introduced by mixing. The quantity

〈B0|H|B0〉 is determined in the Standard Model by the box diagram with t
quark intermediate states. Our matrix element has an outgoing B0, i.e. an
outgoing b quark. The transitions are thus b → t → d, d → t → b. Each of
these introduces VtbV

∗
td, so the phase is given by V ∗2

td ∝ e2iβ. This goes in the
denominator of λ, so λ has the phase e−2iβ.

The problem is that we haven’t determined the overall sign of the result!
In fact, the matrix element is phase-convention dependent. It is only when

it is combined with 〈B0|CP |B0〉 that we get a well-defined result.
The classic calculation is that of T. Inami and C. S. Lim, Prog. Theo.

Phys. 65, 297 (1981). In the Physics Book, the result is cited as

M12 = − G2
F

12π2
ηQCDmB(BBf

2
B)m2

tf2(m
2
t/m

2
W )(VtbV

∗
td)

2〈B0|CP |B0〉 (18)

The factor ηQCD is a QCD correction and is a positive number. The
function f2 is a positive kinematic factor. BB results from a hadronic matrix
element of a four-quark operator:
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〈B0|bαγµ(1− γ5)dαbβγ
µ(1− γ5)dβ|B0〉 = BB(8/3)M2

Bf
2
B (19)

where fB is the (leptonic) B decay constant analogous to fπ. The (8/3) is the
naive result obtained by inserting a vacuum intermediate state in the matrix
element and contracting in all (four) possible ways. Color mismatching leads
to the funny fraction. Typical lattice gauge calculations give BB = 1.3± 0.1
(e.g. J. M. Flynn in ICHEP 1996, p. 335.) Altogether, M12 cancels the
phase dependence and introduces a minus sign, leaving us

λ = e−2iβ−2iφkηf (20)

where φk is the weak phase of the decayB → f , assuming that only amplitude
contributes.

The decay B0 → ψKS is given by b→ ccs. All these quarks are from the
second and third generation. In the Wolfenstein parameterization we note
that phases occur only for transitions between the first and third generations.
Even the penguin diagram for B0 → ψKS has no phase.

Thus λ is given by
λ = −e−2iβ (21)

The minus sign is from ηf . (The ψ has spin one, the KS has no spin. They
need a p-wave to make the B0, which introduces one factor of −1. Intrin-
sically, the ψ has P = −1, C = −1, CP = +1 while the KS is CP = +1
(mostly). Hence ηf = −1.

Altogether,
=λ = sin 2β; (B → ψKS) (22)

as stated in the Physics Book, Eq. 1.123, p. 32.
For the case of B → ππ, if we consider only tree diagrams, the operative

transition for B0 decay is b→ uud. This introduces V ∗
ub whose phase is +γ.

Remember that φk is the phase in B0 decay so φk = γ. Here ηf = +1, since
there is no spin to worry about, just pseudoscalars. Thus

λ = e−2iβ−2iγ = e2iα (23)

where we assumed α+ β + γ = π. With this assumption

=λ = sin 2α; (B → ππ) (24)
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3 Non CP eigenstates

Eq.(??) is perfectly general, independent of the nature of the final state, f .
To consider non-CP eigenstates we follow the physics book writing

Af = 〈f |H|B0〉
Af = 〈f |H|B0〉
Af = 〈f |H|B0〉

Af = 〈f |H|B0〉
(25)

and

λf =
q

p

Af

Af

λf =
q

p

Af

Af

(26)

Now we specialize to the case where there is only one weak decay mech-
anism present, or at least all weak decay mechanisms have the same phase.
Then we can write, with A and A real

Af = Aeiδf eiφf

Af = Aeiδf e−iφf

Af = Aeiδf eiφf 〈B0|CP |B0〉

Af = Aeiδf e−iφf 〈B0|CP |B0〉 (27)

We have, therefore

λf =
q

p

Af

Af

=
q

p

A
A
ei(δ−2φ)

λf =
q

p

Af

Af

=
q

p

A
A
ei(−δ−2φ)

(28)
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where
δ = δf − δf ; 2φ = φf + φf (29)

We can now insert these relations into Eq.(??) using

q

p
= − e−2iβ

〈B0|CP |B0〉
(30)

λf = − e−2iβ

〈B0|CP |B0〉
A
A
ei(δ−2φ)

λf = − e−2iβ

〈B0|CP |B0〉
A
A
ei(−δ−2φ) 〈B0|CP |B0〉

〈B0|CP |B0〉
= − e−2iβ

〈B0|CP |B0〉
A
A
ei(−δ−2φ)

(31)

Both λf and λf are independent of the phase conventions chosen for |B0〉 and

B
0
. Of course, we have specifically chosen the Wolfenstein parameterization

for the CKM matrix.
We see that

1

〈B0|CP |B0〉
A
A

= r (32)

is real and
1

〈B0|CP |B0〉
A
A

=
1

r
(33)

Collecting all these results,

|〈f |H|B0
phys(t)〉|2 = |A|2[1

2
(1 + r2) + 1

2
(1− r2) cos ∆mt− r sin(2β + 2φ− δ) sin ∆mt]

|〈f |H|B0
phys(t)〉|2 = |A|2[1

2
(1 + r2)− 1

2
(1− r2) cos ∆mt+ r sin(2β + 2φ− δ) sin ∆mt]

|〈f |H|B0
phys(t)〉|2 = |A|2[1

2
(1 + r−2) + 1

2
(1− r−2) cos ∆mt− 1

r
sin(2β + 2φ+ δ) sin ∆mt]

|〈f |H|B0
phys(t)〉|2 = |A|2[1

2
(1 + r−2)− 1

2
(1− r−2) cos ∆mt+

1

r
sin(2β + 2φ+ δ) sin ∆mt]

(34)

We can write the final two expressions as

|〈f |H|B0
phys(t)〉|2 = |A|2[1

2
(1 + r2)− 1

2
(1− r2) cos ∆mt− r sin(2β + 2φ+ δ) sin ∆mt]

|〈f |H|B0
phys(t)〉|2 = |A|2[1

2
(1 + r2) + 1

2
(1− r2) cos ∆mt+ r sin(2β + 2φ+ δ) sin ∆mt]

(35)
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Note that since we assumed that there was only one weak phase, if f is,
in fact, a CP eigenstate, r = ±1.

This formalism is appropriate to final states like ρπ and D∗D. In fact for
charged final states this are transformed into each other by c↔ u.


